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During the second phase of the program, a series of synthetic routes-leading -

to 2,3,5,6-tetranitro-1,4-diazine (TND) were investigated. Nitrolysis of tetra-
carboxydiazine and aminotricarboxydiazine were unsuccessful. Nitrolysis of 2,3-diamino-5,
6-dicarboxy-1,4-diazine and 2%6-diamino-3,5-dicarboxy-1,4-diazine yielded the ...~
corresponding diaminodinitrodiazines. A number of oxidation agents and procedures

were used on each including peroxytrifluoroacetic acid, peroxytrifluoromethane

sulfonic acid and ozone under varing conditions. Both of the diaminodinitrodiazines

were impervious to even the strongest oxidizing agents, and TND could not be

prepared. .




CONTENTS

OBJECTIVES 1
INTRODUCTION 2
DISCUSSION
Preparation and Properties of Triquinoyl Hydrate 4 —
Preparation 4
Melting Point 7
Infrared Spectrum 7
Raman Spectrum 11
Ultraviolet Spectrum 11 i
Fluorescence Spectrun 14 -
X-ray Diffraction Pattern 14
Nuclear !Magnetic Resonance Pattern 20 k)
) Differential Scanning Calorimetry 24 W
K Heat of Combustion 24 ‘
Mass Spectrum 27 ’
Potentiometric Titration 28 Oy
| Ion chromatography 28 -
’ Hardness 31 R
Detonability 31 "
Solubility 33
Biological Activity 35
A High Molecular Weight Analog 37 .
Derivatives 37 ’
Reaction with Butyl Isocyanate 38 .
Reaction with Trifluoroethanol 38 N
Reaction with Hydrogen Peroxide 38 X
Reacticn with Acetyl Nitrate 38 M
Reaction with Oxidizing Acids 39 hd
Reaction with a Diamine 4y “
Reaction with Propylene Oxide 4u .
Reaction with Acetaldehyde 40 L
Reaction with Acetic Anhydride 40 Sl
Reaction with Thionyl Chloride 41 ;
Reaction with Diepoxides 41 g
Triquinoy! Hydrate as a Polymerization Inhibitor 43 -
Reaction with Hydroxylamine 45
Reaction with Semicarbazide 46 v
Photochemistry 47 i
3
Applications 43 >
Cool Gas Generator 48
Monopropellant Ingredient 4y i
Agent for Driving Hydraulic Machinery a8 o
&
R

.

111

ity BT Y 0 OGNS0 )
ADAONON N ORI 0'5‘1'1.;.5.,..“\“ C‘.’O.‘,i"lo.‘ ) -,‘0. ) ‘l‘;‘l‘ 'l. .l.\“ o N ) y -'l. 3mmh§




EXPERIMENTAL

REFERENCES
GLOSSARY

Comonomer for Condensation Polymerization
Low-10ss Dielectric

Curing Agent for Epoxy Resins

Synthetic Routes to TND

Oxidation of Diaminodinitrodiazines

-Dioxo-5,6-dicyano-1,2,3,4-tetrahydrodiazine
Diamino-5,6-dicarboxy-1,4-diazine
Diamino-5,6-dinitro-1,4-diazine

2,3
2,3
2,3




FIGURES

l. Candidate Compounds
2. Preparation of Triquinoyl Hydrate

3. Infrared Spectrum of Triquinoyl Hydrate 8
4, Far Infrared Spectrum of Triquinoyl Hydrate 9
5. Far Infrared Spectrum of Triquinoyl Hydrate 10
6. Raman Spectrum ofTriquinoyl Hydrate 12
7. Utraviolet Spectrum of Triquinoyl Hydrate 13
8. Fluorescence Spectrum of Triquinoyl Hydrate 15

9. Fluorescence Spectrum of Triquinoyl Hydrate at 3 Excitation

Wavelengths 16
10. Unit Cell of Triquinoyl Hydrate 18
11. Hydrogen Bonding Pattern in the Triquinoyl Hydrate Crystal 19
12. Carbon 13 NMR of Triquinoyl Hydrate 21
13. Carbon 13 NMR of Triquinoyl Hydrate 22
14. Triquinoyl Hydrate Dehydration Products 23
15. DSC of Triquinoy) Hydrate 2>
16. +deat of Combustion of Cyclohexane Derivatives 26
17. Potentiometric Titration of Triquinoyl Hydrate 29
18. Ion Chromatography of Triquinoyl Hydrate 30
19. Rate of Weight Loss of Triquinoyl Hydrate 32

20. Loss of Weight of Triquinoyl Hydrate Over Drierite at

Reduced Pressure 34
21. Gain in Weight of Triquinoy) Hydrate Stored Over Water 36
22. Weight of Triquinoyl Hydrate/UNOX 2U6 Mixture Stored at 4U C 42
23. Weight of Triquinoyl Hydrate/UNOX 206 Mixture Stored at 65 C 44
24, Synthetic Routes to TND 51
25. Alternative Synthesis of 2,3-Diamino-5,6-dinitro-1,4-diazine 53
Hydrogen Bonding of 2,6-Diamino-3,5-dinitro-1,4-diazine

« V.T 8,708



N,

SUMMARY

The first phase of this program was an investigation of triquinoyl
hydrate (hexaketocyclohexane octahydrate, CgHjg014) which is known to be
formed when certain cyclohexane derivatives are treated with cold nitric
acid. This ketone hydrate has now been characterized by measurements of
its elemental composition, x-ray diffraction pattern, density, infrared and
Raman spectrum, carbon thirteen nuclear magnetic resonance pattern,
ultraviolet absorption and fluoresence spectra, 1ion chromatogram,
potentiometric titration curve, solubility, rate of weight loss at several
temperatures, heat of decomposition and of combustion, and reactivity
toward several different nucleophiles, reducing agents and oxidizing
agents. The ketone hydrate is an unusually dense, tightly hydrogen-bonded,
acidic, crystalline material which in solution rapidly undergoes
dehydration, disproportionation and ring-opening reactions. It may be
regarded as a graphite oxide (graphitic acid) having the maximum
oxygen-to-carbon ratio.

The properties observed suggest the following applications for
triquinoyl hydrate: cool gas generator, curing agent for epoxy resins,
low-loss dielectric, monopropellant ingredient, comonomer for condensation
with diamines and source of compressed water for developing pressure in
hydraulic systems. In the presence of liquid diepoxides the ketone hydrate
is stabilized against gassing; this fact may allow formulation of
triquinoyl hydrate compositions which have acceptable shelf life. For the
purpose of uncovering new applications it is helpful to think of triquinoy]
hydrate as a kind of ice which has very high density (1.92 g/ml), is solid
up to about 100 C but instantly melts in the presence of base to release
liquid water.

During the second phase of the program a series of synthetic routes
leading to 2,3,5,b-tetranitro-1,4-diazine (TND) were investigated.
Nitrolysis of tetracarboxydiazine and aminotricarboxydiazine were
unsuccessful. Nitrolysis of 2,3-diamino-5,6-dicraboxy-1,4-dazine and
2,6-diamino-3,5-dicarboxy-1,4-diazine yielded the corresponding

diaminodinitrodiazines. A number of oxidation agents and procedures were
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used on each including peroxytrifluoroacetic acid, peroxytrifiuoromethane ,,»f“’_
sulfonic acid and ozone under varing conditions. Both of the i
diaminodinitrodiazines were impervious to even the stronges oxidizing .
agents, and TND could not be prepared.

vii
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OBJECTIVES

The program was designed to test the concept that polyfunctionality,
symmetry, crowding and density in high energy wmolecules will produce an
improved balance of oxidizing power against room temperature stability.
Initially  this involved preparation of a  series of cyclic
per (hydroxy Jhydrocarbons or their ketals in anticipation of converting them
to cyclic high energy derivatives (nitro-ketal amine nitrate, amine
perchlorate, and others).

During the first year of the program, triquinoyl hydrate was prepared
and extensively characterized. It became clear that structures of this type
are inherently unstable at ambient temperature, and that they are not good
candidates for preparation of energetic derivatives. The limited stability
of triquinoyl hydrate is dependent on the symmetry and hydrogen bonding,
and when this 1is disturbed in an attempt to prepare a derivative,
rearrangement to rhodizonic acid and open ring structures occurs
immediately.

For the second year of the programn, the emphasis was shifted to an
investigation of the synthesis of symmetrical, energetic, high density
heterocyclic compounds. The value of nitro substituted heterocycles such
as HMX and RDX has been clearly demonstrated over the years, and synthetic
routes to similar structures having higher density and energy can be
designed. The obhjective of the work conducted over the second year of
this program has been to prepare and characterize such materials.
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INTRUDUCTION

As starting materials for the preparation of some new, oxygen-rich,
high density substances, we chose the per(hydroxylated)cycloaliphatic
compounds. The best known member of this series is triquinoyl hydrate
(hexaketocyclohexane octahydrate), I, a compound first reported more than

one hundred years agol, but never derivatized and never fully characterized
by modern methods.

(OH)2 (OH)2

(OH)2 (OH)2 2H20

(OH)2 (OH)2

M 4 IR ZA R D =) EE)

RS

The hydroxyl functionality in this molecule, its high oxygen content, its
symretry and its ready availability make this a starting material likely to
undergo useful novel reactions.

Bz B2

A large body of literature exists concerning synthesis of high
density, high enerqy materials. After a brief review of that Jliterature,
three additional compounds were selected for investigation under this
program. Those three materials and the estimated properties of each is
shown in Figure 1. Selection of these materials for synthesis is based on
the work conducted by Don Levins (currently at CSD) under an AFRPL contract
at SRI International.? During the course of that work, Don Levins prepared
a compilation of several thousand high energy compounds which was reduced
to about 200 compounds of interest. The first two compounds shown were
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investigated under that program. The rationale for selection of the
compounds shown is based on the probability of a successful synthesis and
the fact that they meet
this program.

the criteria for materials to be investigated on

N~ - N~ -
‘./\v y/\ . . ey
'Q' A\QT CaN Ne-
I I T~.‘\'k ) NS C~N O NT -
N - : . = .
ne-
Acronym DNTT 1712 TND
Estimated 2.0 2.0 2.0 density
Oxygen +1.,2 +1.4 +1.5 Balance*
Estimated 104 68 59

heat of formation

L R il

* Weight * based on conversion to CO

Figure 1. Candidate Compounds

(TND) the first

intermediate to be used in the
synthetic routes are well known,3,4,5,6,7 there are several alternative

2,3,5,6-Tetranitro-1,4-diazine was selected as

compound to be prepared because the

routes available, and investigation of those routes could help to provide
insight into the complicated processes involved in amine oxidation. In the
efforts to 3,6-dinitro-1,2,4,5-tetrazine (DNTT) and
2,4,6-trinitro-1,3,5-triazine (TTZ), the primary problems were in synthetic

earlier prepare

steps involving the oxidation of amines. It was anticipated that knowledge

gained in the synthesis of TND would make it possible to prepare DNTT and
1712,
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DISCUSSION

PREPARATION AND PROPERTIES OF TRIQUINOYL HYDRATE

The structure and the known properties of triquinoyl hydrate are so
unusual that we have decided to obtain several samples of this material and
characterize them by a variety of instrumental methods before proceeding to J
the study of reactions and uses. The samples and their properties are y

described in this section. @
Preparation 3 ;
o

Triquinoyl hydrate has been reported to be the reaction product
obtained by treating several hexa-substituted cyclohexane or benzene E
derivatives with cold, concentrated nitric acid (Figure 2). As starting

rhodizonic acid (obtainable from the reduction of carbon monoxide with

e

o . ) A
materials one may use inositol (a readily available natural product), Q
potassium metal) or tetrahydroxyquinone (accessible from the ﬂ
(]
self-condensation of glyoxal). The variety of suitable starting materials

and their low cost suggest that triquinoyl hydrate might be made available :@
on a large scale if needed.

A laboratory preparation developed at the National Bureau of Standards E
has been described in detail8., This preparation has now been repeated and )
shown to yield a colorless crystalline product with the expected melting g )
point, infrared spectrum and elemental composition (Table 1). Research
quantities of the compound ("hexaketocyclohexane octahydrate, 97%") are @
also available from Aldrich Chemical Company (Aldrich 12,856-2, Lot 1701
ML) and from other suppliers. The 1inorganic content and the @
carbon/hydrogen ratio in the Aldrich product (Table 1) are both higher than

desired but can be improved by recrystallization from nitric acid/methanol Qo
by the NBS procedure (Table I). g

g
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Carbon, %

Table 1. Elemental Composition of Triquinoyl Hydrate?)

Theoretical
Composition

23.05

Hydrogen, % 5.17

Oxygen, %

71.78

Nitrogen, % 0

Ash, %

QN oo
et et N N

0

Elemental analyses performed at Galbraith Laboratories, Knoxville, TN,

By difference.

Sample prepared

in this work by
Bureau of Standards
MethodC)

23.20
5.24
71.560)

0.05

Aldrich
Lot 1701 mLd)

24.24
4.99

<0.0042
0.61

Our sample number III-123, colorless plates.
Brown powder, 97% purity according to supplier.
Our sample number IV-57, colorless plates.

Aldrich Lot
1701 ML after
recrystalli-
zation by
Bureau of
Standards
Methode)

23.17
5.16

0.34
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In a patent9 there is a claim for an improved, high-yield method for :
preparing the ketone hydrate. The product obtained is described as stable o
. I
at 100 C and cyclohexane-soluble. Later in the present report it will be bt
3 . 3 . N '.“
shown that these are not characteristics of triquinoyl hydrate, however, :',;\:2
The patent claims are therefore regarded as suspect. '3-:;‘::?
': gt"
Melting Point c?:.
:.:'.1»3'
‘p:':;
. . . it
When heated rapidly on a melting point block the samples of Table 1 ,‘_f}:;;
(AN
melt at 98-100 C. There is considerable frothing at the melting point; ‘fs‘
water and carbon dioxide are evolved. Because decomposition is rapid at '.;q;«
s P
100 C, the melting point is not a reliable method for characterizing ::‘.::}:
. . LA
triquinoyl hydrate. :::::::
o
" :,‘
Infrared Spectrum X
o
Y
s
The spectrun of triquinoyl hydrate is shown in Figure 3. In the ,' gt
(W)
spectrum there are hydroxyl stretch absorptions, no carbon-hydrogen stretch -.':&!2
bands, some carbon-oxygen stretch bands and in addition bands at 890 and a.;‘.:‘
AR R)
1280 ¢m-1 where many other cyclohexane derivates are known to absorb.1V The ::::E;:
37
spectrum is in good agreement with that reported in the literaturell and is s
o
not changed significantly by washing the sample three times with water (to W
o e . et
remove 31% of the sample). Recrystallization from niiric acid/methanol -
, )
also does not significantly affect the spectrum. j,& A
‘1";‘
- u
A striking feature of this spectrum is the absence of strong o
absorption in the carbonyl region as well as in the carbon-hydrogen stretch -~.;’
region. It was pointed out by Person and Williamsll that the spectrum "f
supports the fully hydrated structure containing geminal dihydroxy groups ..f
o
(structure 1 of the introduction). Wl
o
The far infrared spectrum of triquinoyl hydrate (Figures 4 and 5) (\},
N | \J
consists of several narrow bands bearing a resemblance to the bands of ice. m
. . « 3 . ' .
Large contributions to the heat capacity of triquinoyl hydrate are ,QE‘.‘
presumably made by the low frequency, ice-like oscillations. ey
b
7 E}:“
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We are indebted to Bob Rosenthal, Nicolet Instruments, Madison, o

.

Wisconsin for the far infrared data. e

‘;::’I

Raman Spectrum e

!i‘:‘y

t.i

lz“si

Bands in the Raman spectrum of triquinoy) hydrate (Figure 6) do not in oty

general have an exact counterpart in the infrared. The strongest e

1 f,

Raman band (690 cm-!) clearly has no infrared counterpart, this band 9$$

.I

isbelieved to be the symmetrical ring-breathing band. The frequency of 453
; : . . . . 4

this band is lower than the corresponding ring-breathing bands in the five ,ﬁw

menbered and four-menbered ring compounds.l2 "oy

e

. . o i

Although good Raman data were obtained on crystalline triquinoyl fa,

DU

hydrate, water solutions of this material proved too strongly fluorescent ﬂgﬁ

to permit spectroscopy on the solution. The fluorescence of the material ‘7.

N : . » . . '

1s discussed in a separate section of this report. ﬂék

. :.:l

. ":g‘.

We are indebzed to Mark Andersen, McCrone Associates, Chicago for the f.a-

Rarman data. *EE
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Ultraviolet Spectrun $?¢

‘l

e

In spite of the fact that the infrared spectrum does not support the X

3 ]

free ketone structure, an agueous solution of the ketone hydrate absorbs in ]
F

the ulzraviolet about as expected for free ketone (Figure 7; ~ “:

. AN

Amax = 267 nm). The conclusion, already reached by others, is that ’ 5!

dehydration occurs when the fully hydrated structure is dissolved in water. ALN

If it is assumed that the absorptivity of the carbonyl groups in this F.‘
»

solution is the same as in acetone then the observed absorbance would o,

indicate that there are about three ketone groups per mole of triquinoyl ;ki

hydrate in solution, i.e., that most of the dissolved material has the ;.f

structure 11 A
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The absorptions at longer wavelengths (355 nm) show that the aqueous
solution contains conjugated, more highly dehydrated structures and that
structure 11 is not the only (or even the major) dehydration product
present. The composition of the aqueous solution is discussed further in
the NMR section of this report.

Very pure samples are required in order to record the ultraviolet
spectrum of triquinoyl hydrate. The colored impurities and decomposition
products absorb strongly in the ultraviolet and obscure the 267 nm maximun
characteristic of the pure substance. The spectrum of Figure 7 1is in
excellent agreement with National Bureau of Standards data.8

Fluorescence Spectrum

Crystalline colorless ketone hydrate does not fluoresce visibly when
irradiated with a 254 nmn lamp. In aqueous brine solution, however, it
fluoresces measurably in the visible (Figures & and 9). This provides
further evidence of the presence of free ketone(s) in the solution.
Impurities in commercial triquinoyl hydrate (Aldrich Lot 1701 ML) are
powerfully fluorescent and may be excited with visible light.

When deposited on fluorescent, doped silica, thin layer chromatography
plates, triquinoyl hydrate displays a pink fluorescence when irradiated
with a 254 nn lamp. The fluorescence is not characteristic of triquinoyl
hydrate, however;, ac:idic substances in general (including hydrochloric
acid) cause these plates to fluoresce in the pink.

Paul Spink, Perxkin-Elmer {(orporation, Mountain View, California
provided the fluorescence spectra of Figures 8 and 9.

XK-ray Diffraction

The crystal structure and nolecular dimensions of triquinoyl hydrate
have never been reported 1n spite of the fact that the syrmmetry of the
molecule should mate 1nterpretatinn of the diffraction pattern simple. To

prepare crystals suitable for single-crystal diffraction, some of Algrich
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Lot 1701 ML was recrystallized from methanol/acetone/nitric acid as
suggested by Fatiadi, et al8 (Bureau of Standards method; sample 111-127).
This gave some nearly colorless plates about UO.lmm in thickness. When
examined under the polarizing microscope some of these crystals appeared to
be uniform as to refractive index and free of visible flaws. They had
density 1.9 g/ml as determined by sink-or-float observations in solutions
of known density. The crystals therefore appeared good candidates for x-ray
diffraction and were submitted to Dr. W. T. Pennington, Molecular

Structure Corporation, College Station, Texas for a structure
determination.

The URTEP representation of the molecule resulting from the Molecular
Structure Corporation study shows that there is a center of symmetry at the
center of tne cyclohexane ring; each of the 0-H bonds has one matching
anti-parallel 0-H bond at the opposite end of the molecule. Unlike the
planar ring in the corresponding cyclobutane derivativel3, the cyclohexane

ring in CgH1gJ14 has the non-planar, chair conformation.

A1l of tne hydrogen atoms perticipate in hydrogen honding, The
resulting packing of the molecules within the crystal is very tight and is
difficult to represen:t in two dimensions. An atternpt to do so is the
drawing of Figure 1J. The exceptionally tight packing is reflected also in
the calculated density of the crystal, 1.92 g/ml. This density is not as
high as that of the corresponding cyclobutane derivativel3, 1.9% to 2.00
g/ml, but is far higher than for the typical monocyclic
carbon-hydrogen-oxygen compound.

The connectivity of the hydrogen-bonding in the triquinoyl hydrate
crystal is shown in Figure 1l1. This pattern is derived from the x-ray
diffraction pattern by applying the following criterion: If the 0Q---H
separation in the crystal is U,02-0U.03 nm less than the sum of the van der
Waals radii, then a strong hydrogen bond exists at U--+H. By applying this
test to the x-ray data the three types of hydrogen-bond {tri-, di- and
monofunctional) shown in Figure 11 can be identified.
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It is useful to estimate the additional bond energy provided by the
hydrogen bonds in this crystal. Since there are sixteen hydrogen bonds

associated with each CgH16074 molecule and each contributes about 2 to 6

M
E kcal/mole to the bondingl4, the total bond energy contributed by hydrogen
o bonds is 32-96 kcal/mole! This 1is the energy equivalent of additional

covalent carbon-carbon bond in the molecule. In an energy sense then, the
bonding in this crystal is that of a bridged-ring, polycyclic or polymeric,

ring-in-chain compound. The high density of the crystal also reflects this
additional bonding energy.

N NMR Pattern

When dissolved in two normal sodiun chloride solution containing 10%
added deuterium oxide, triquinoy! hydrate gave the 13¢ NMR pattern shown in

s Figures 12 and 13. The group of signals near 100 ppm are attributable to

X sp3 carbons; the three signals at 143 ppm, 191 ppm and 202 ppn are

: attributable to carbonyl carbons. This spectrum supports the conclusion )

: derived from the ultraviolet spectrum, namely, that the C(OH)2 groups lose Ea

; water when the ketone hydrate is dissolved in brine. At least sixteen sp3

3 signals appear 1in the spectrum; sixteen 1is the number expected for EQ

g dehydration to yield a mixture of cyclic monoketone, all three isomeric i

: diketones and all three isomeric triketones (Figure 14). The spectrum ;a
indicates dehydration at least through the triketone 1level and possibly

further. That the carbonyl carbon pattern is not as complex as calculated

-
“a2%e

b in Figure 14 is perhaps due to coincident carbonyl signals from two or more ;-
L ketones.

-
X -
5 Fron a polarographic study it was concluded that triquinoyl hydrate in '
2 water solution is fully hydratedl®, The NMR results show that this ”

conclusion is only approximately correct; unhydrated carbonyl groups are
clearly present.

LT 2

Y We are indebted to LeRoy Johnson, General Electric, Fremont,

P California for the NMR data of Figures 12 and 13. g
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Differential Scanning Calorimetry

When heated in a differential scanning calorimeter, the ketone hydrate A
first undergoes a large endothermic change, then a small exothermic one and _
A

finally a very small endothermic change (Figure 15). The first endotherm f-z

is quite large, larger even than the endotherm for melting ice
(80 cal/gm). The magnitude of this first change is doubtless the net E:
result of simultaneous melting (endothermic), dehydration or
decarboxylation (possibly exothermic) and vaporization of water (highly
endothermic). A1l of these processes involve the rupture of multiple

L=

hydrogen bonds, of course, and a large endotherm is expected from that

o

source alone. +

L} 2]

When triquinoyl hydrate is warmed from liquid nitrogen temperature to

room temperature in the scanninc calorimeter no transitions (heat capacity \
discontinuities) are detected. The hydroxyl groups of triquinoyl hydrate :?-:
evidently do not undergo the flip-flop motion found in other polyhydroxylic * p
compounds.lb The sharp x-ray diffraction pattern observed for L2 ) 'i
<1

room-temperature triquinoyl hydrate seems consistent with the differential

scanning calorimeter results.

A Fp

Heat of Combustion
N A
A sample of Aldrich Lot 1701 ML was submitted to the coal testing .
laboratory at Galbraith Laboratories, Knoxville, Tennessee  for .:'_: o}
"~

determination of heat of combustion. The measured heat is 1886 BTU/lb,

which corresponds to 327 kcal/mole or 1.1 kcal/gm. A comparison of this T‘: 3
heat with the corresponding handbook values for cyclohexane and for ""j.
inositol is shown in Figure 16. The effect of mono-hydroxylation and o :
di-hydroxylation of each carbon are similar; the introduction of the first b v

-

six and second six hydroxyl groups both reduce the molar heat of combustion
of cyclohexane by about 300 kcal/mole. On an equal volume basis, however,
the effect of increasing the hydroxy! content is not as large (Figure 16). N
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Cyclohexane
(1iquid)

937 kcal/mole

11 kcal/g
8.5 kcal/ml
Figure 1€.

Inositol
(solid)

HO OH
OH

661 kcal/mole
3.7 kcal/g

5.9 kcal/ml

26

Triguinoyl
Hydrate (solid)

(OH)2
(0H)2 \I(OH)Z
S - 2H20
(OH)2 (0H)2
(OH)2

327 kcal/mole
1.1 kcal/g
2.1 kcal/ml

Heat of Combustion of Cyclohexane Derivatives
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By comparing the heat of combustion of triquinoyl hydrate with that of
six moles of carbon monoxide, the heat of polymerization and hydration of

carbon monoxide may be estimated. The calculation is the following:

(6 x 68) - 327
6

13.5 kcal/mole of CO polymerized and hydrated

The polymerization with hydration is thus an only slightly exothermic
event,

Mass Spectrum

The electron impact mass spectrum of the ketone hydrate has been
reported by Skujins, et al.l7 No parent ion was detected, but large yields
of carbon dioxide, carbon monoxide and water were observed. Among other
things, this observation leads to the prediction that the ketone hydrate
will be sensitive to ionizing radiation and will release large amounts of
gas when irradiated. No tests of radiation sensitivity have been
performed, however.

Occasionally, deeply oxidized organic compounds are found to release
elemental oxygen when decomposed. In the mass spectrum of triquinoy!
hydrate and its cyclic hono]ogsl7, there is a weak peak at m/e 16 and 32 as
expected for elemental oxygen. This peak 1is still weaker in the less
highly oxidized analogs tetrahydroxygquinone and rhodizonic acidld.  Tnhe
release of oxygen is only a minor decomposition pathway for triquinoyl
hydrate in the mass spectrometer; carbon dioxide and water are the
principal decomposition products.
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Potentiometric Titration

Aqueous solutions of the ketone hydrate are acidic and may be titrated
with aqueous base; the course of a potentiometric titration with sodium
hydroxide is shown in Figure 17. The surprising result of this titration
is that about two moles of base are required to neutralize one mole of the
ketone hydrate. This result, according to Fleury and Fleury,l8 is due to
the reaction

JH  OH

CeHi6014 + 2NaOH —> Na00C-E=C-CH-Cuona + CO2 + THpU

If this is the correct interpretation then the neutralization should be
accompanied by an unusually large increase in entropy and in liquid volume
due to 1) opening of the ring, 2) release of seven water rolecules, and 3)
release of carbon dioxide into the aqueous solution. The infrared spectrun
of the solid residue remaining after evaporating the titrated solution
showed that carboxylate groups are in fact present and that therefore ring
opening does occur. The pKk observed in the titration (Figure 17) gives
further confirmation of the formation of carboxyl groups.

lon Chromatography

Like many polyhydroxylic compounds, triquinoyl hydrate may be
chromatographed on an acidic ion exchange resin with aqueous base as
eluant; a pulsed amperometric detector may be used to monitor the
electrochemically active conponents. When Aldrich Lot 1701 ML s
chromatographed by a scheme of this kindl9, one large peak and several
smaller, later emerging peaks are obtained (Figure 18). The chromatogranm
seems consistent with the finding of Fleury and Fleury that triquinoy)
hydrate is immediately converted in 85% yield to
NaOOC-C(OH)=C(UH)CH(UH)-COONa when dissolved in aqueous base. If the
triquinoyl hydrate is heated at 65 C overnight nearly all of the triquinoyl
hydrate is destroyed; peak 1 of the chromatogram is then smaller than later

emerging peaks.

&

&L
va'y)

21X

Lo

i':

’é

Y

(PR



. ooy, W l..ll.".\"l o~ - » v -ae o ] y e A - iy -, 4._ . - - ,.l. - e &
B e W B T L e A R L WM e o T P PSS ey X W Lo 7 7205 B P S S Sl [ s v 0,5

¥
Pl o
wue PR e P e A S .} i: T mY e S APV <R 2 e

o
N

(W TOLT 307 Ydtaply) dptx0uphy wnipos snoanby yiim
3j1e4pAy LAouinbiu] jo uoLjeadl] dt4jawOLIUajod /] a4nby 4

.. .'. A'

L]
‘o,

/ 1w ‘pappe Jueilyl . .

G R RO e N N R "

e

, ’.' ('v(‘f'f‘f‘f.-"l'r

¢ iUoTiezy[eaInau Jrey 3Ie Hd

8/baw 14°9 ia(noatow 1ad
. guojoad 21p1ow om) 3ujunese
- 4pa3uInNiTed ‘3yd yam Juarwarnbi

v 68°6 . :
jutod pus

8/baw ¢1°, . pIazasqo ‘*Iy3yam juarwaynbl

29
1eTiuailog

8 (191°0 ‘o218 2]duweg

133wM (JUIATOS

apixoapiy wnipos N 6201°0 .“usuuuua
1awoled 3sujedv I9AT16 ‘waisds 2p013231d

1239WT2IFI WYOIII | JuswniIsuy




\

wor e b 4 e ‘lll)lll..,avla. ol g gy i T e e % il g i
: ."& e S B WG B N, 0 X .ﬂ’]?a“ Q.;...'.D..’- kﬁ”% \‘.VN.”-WAH . ~ W I & ‘ l.“\“u?‘ M. L‘l‘l’(‘!l\.ll T <.(1Vh T
k & . N W P k ;
‘ " & 4,

] lwm . ) , ] - TINAR PSR A . )
X ] BSR4 B g FEX A . - L AT AR O
M FaTotd LN A | vl q.u A (s s m.ﬂm .\u.\\hm gy oL | o
P (W 1041 307 Yd2L4pLY)
= ) 93e4pky Aoutnbiay 30 Kydeubojewoay)y uoy 81 a4nb14
z ( 89AT38BATIIP J0) —pe
—

b sa1qyLndut
: (1 sead) uw.ﬁgﬁwv equapdy Thougnbyay ——
: (3ovjTgae (equomaysul) 1P 03BN _
; ’ . uo1499fuy OTUuEes —» J

o
v o

R




:! ..::
: 2
4 0
. o
Bi11 Edwards, Dionex Corporation, Sunnyvale, California provided the .;3
chromatogram of Figure 18. \2
o Hardness ; §
1
} The high crosslink density and sharp crystal edges suggest that ;51
triquinoyl hydrate should have good abrasive properties. It has, in fact, $EE
3 been found that the crystal will scratch some of the harder organic solids E:‘
’ -- polymethyl methacrylate, polystyrene, or cured epoxy resin. The melting ’f
v point of the crystal is, of course, far lower than that of conventional E¢/
L inorganic abrasive materials and that melting point will place a low limit ;:
on the rate at which a hard substrate may be abraded with the ketone N
hydrate. o
. Detonability ;3%
o
. Although some exothermic reactions may be envisioned for the ;f‘
gasification of hexaketocyclohexane octahydrate, all attempts at initiating !

) the detonation were unsuccessful. . Hammer blows, electrical discharges and EE
" flames all failed to initiate detonation. If detonation is possible, it ‘:-
will require an explosive charge to provide sufficient initiating impact. ,f
2%
. The generalization has been made that organic dust explosions increase :;{
N in destructive power as the carboxyl and hydroxyl content of the organic ;i]
dust is increased?V, Cellulose dust, for example, is more dangerous than P?f

' polystyrene dust or coal dust. If the generalization about hydroxyl groups :Q
A is correct, then triquinoyl hydrate is the most dangerous of organic dusts. E;§
: No tests of the dust explosion hazard have been performed. *:‘
- >
j Pyrolysis :f,
o
. In an oven at 65 C and at 10U C the ketone hydrate loses weight \fg
rapidly (Figure 19) until about 5U% weight loss is reached. The infrared e

spectrum of the gases collected over the samples shows that carbon dioxide hy
and water are the major volatile products; carbon monoxide is not detected. E '

e
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Figure 19. Rate of weig-t loss at twc temperaturee (trigq